Sahih Bukhari - Volume 1

Volume 1



INSTRUCTION

Sahih Bukhari - Volume 2

Volume 2
INSTRUCTION

Sahih Bukhari - Volume 3

Volume 3
INSTRUCTION

Sahih Bukhari - Volume 4

Volume 4
INSTRUCTION

Sahih Bukhari - Volume 5

Volume 5
INSTRUCTION

Sahih Bukhari - Volume 6

Volume 6
INSTRUCTION

Sahih Bukhari - Volume 7

Volume 7
INSTRUCTION

Sahih Bukhari - Volume 8

Volume 8
INSTRUCTION

AHKAM -E-ZAKAT

AHKAM ZAKAT
INSTRAUCTION

FAZAIL-E-QURAN

Fazail-e-Quraan
INSTRAUCTION

ASHAN FIQA PART 2

Asan Fiqha Part 2
INSTRAUCTION

ASHAN FIQA PART 1

Asan Fiqha Part 1
INSTRAUCTION

Ar+raheeq++al+makhtoom

STEAM TRAPS .PDF

Steam Traps
INSTRUCTION....

Qasas Ul Anbiya in Urdu

Kaeser Compressor and valve (OF)-11

Compressor Manual (KAESER)1_9964_0-00_8-5bar

Industrial Valves

Watch this Presentation.............................. click here

Permutit Filter

The raw feed water being pressurized is allowed to enter the sand-filter-tank top after a strainer in-line of make-up water supply line. We have facility of one in service and other standby line for make-up water supply. Any maintenance or other jobs in water lines allow the smooth operation by other. A connection is also given to brine water pump for its priming and to soda plant facility for dilution and operational need. All the three sand filter tanks remain in operation/ running. The bottom furnishes the turbidity-free or much lowered TSS (Total Suspended Solids) feed water. A hosepipe taken from filters discharge serves in brine solution preparation by supplying raw water to the brine pit. Details of filters are as follows

 
              Name                        Permutit Filters   
    Filter Media               Anthracite
Pressure  in                 70 Psi  
Pressure out                50 Psi  
Temperature               Ambient

Picture shows a cutaway view of a pressure filter. The construction of this filter is very similar to that of the gravity filter. Take note of the underdrain construction in that the filtered water is passed through perforated pipes into the filtered water outlet. As opposed to that of the gravity filter above, the filtered water does not fall through a bottom and into the underdrain, because it had already been collected by the perforated pipes. The coarse sand and graded gravel rest on the concrete subfill.
Using a pump or any means of increasing pressure, the raw water is introduced to the unit through the raw water inlet. It passes through the bed and out into the outlet. The unit is operated under pressure, so the filter media must be enclosed in a shell. As the filter becomes clogged, it is cleaned by backwashing.
Thickened and digested sludges may be further reduced in volume by dewatering. Various dewatering operations are used including vacuum filtration, centrifugation, pressure filtration, belt filters, and bed drying. In all these units, cakes areformed. We therefore call these types of filtration cake-forming filtration or simply cake filtration.


Super Heater Tube

A superheater is a device used to convert saturated steam or wet steam into dry steam used for power generation or processes. There are three types of superheaters namely: radiant, convection, and separately fired. A superheater can vary in size from a few tens of feet to several hundred feet (a few metres or some hundred metres).
A radiant superheater is placed directly in the combustion chamber.

A convection superheater is located in the path of the hot gases.

A separately fired superheater, as its name implies, is totally separated from the boiler.

A superheater is a device in a steam engine, when considering locomotives, that heats the steam generated by the boiler again, increasing its thermal energy and decreasing the likelihood that it will condense inside the engine.[1][2] Superheaters increase the efficiency of the steam engine, and were widely adopted. Steam which has been superheated is logically known as superheated steam; non-superheated steam is called saturated steam or wet steam. Superheaters were applied to steam locomotives in quantity from the early 20th century, to most steam vehicles, and to stationary steam engines. This equipment is still an integral part of power generating stations throughout the world.


Locomotive use
In steam locomotive use, by far the most common form of superheater is the fire-tube type. This takes the saturated steam supplied in the dry pipe into a superheater header mounted against the tube sheet in the smokebox. The steam is then passed through a number of superheater elements—long pipes which are placed inside special, widened fire tubes, called flues. Hot combustion gases from the locomotive's fire pass through these flues just like they do the firetubes, and as well as heating the water they also heat the steam inside the superheater elements they flow over. The superheater element doubles back on itself so that the heated steam can return; most do this twice at the fire end and once at the smokebox end, so that the steam travels a distance of four times the header's length while being heated. The superheated steam, at the end of its journey through the elements, passes into a separate compartment of the superheater header and then to the cylinders as normal.

Damper and snifting valve
The steam passing through the superheater elements cools their metal and prevents them from melting, but when the throttle closes this cooling effect is absent, and thus a damper closes in the smokebox to cut off the flow through the flues and prevent them being damaged. Some locomotives (particularly on the London and North Eastern Railway) were fitted with snifting valves which admitted air to the superheater when the locomotive was coasting (drifting). This kept the superheater elements cool and the cylinders warm. The snifting valve can be seen behind the chimney on many LNER locomotives.

Front-end throttle
A superheater increases the distance between the throttle and the cylinders in the steam circuit and thus reduces the immediacy of throttle action. To counteract this, some later steam locomotives were fitted with a front-end throttle—placed in the smokebox after the superheater. Such locomotives can sometimes be identified by an external throttle rod that stretches the whole length of the boiler, with a crank on the outside of the smokebox. This arrangement also allows superheated steam to be used for auxiliary appliances, such as the dynamo and air pumps. Another benefit of the front end throttle is that superheated steam is immediately available. With the dome throttle it took quite some time before the super heater actually provided benefits in efficiency. One can think of it in this way: if one opens saturated steam from the boiler to the superheater it goes straight through the superheater units and to the cylinders which doesn't leave much time for the steam to be superheated. With the front-end throttle, steam is in the superheater units while the engine is sitting at the station and that steam is being superheated. Then when the throttle is opened, superheated steam goes to the cylinders immediately.

Advantages and disadvantages
The main advantages of using a superheater are reduced fuel and water consumption but there is a price to pay in increased maintenance costs. In most cases the benefits outweighed the costs and superheaters were widely used. An exception was shunting locomotives (switchers). British shunting locomotives were rarely fitted with superheaters. In locomotives used for mineral traffic the advantages seem to have been marginal. For example, the North Eastern Railway fitted superheaters to some of its NER Class P mineral locomotives but later began to remove them.

Without careful maintenance superheaters are prone to a particular type of hazardous failure in the tube bursting at the U-shaped turns in the superheater tube. This is difficult to both manufacture, and test when installed, and a rupture will cause the superheated high-pressure steam to escape immediately into the large flues, then back to the fire and into the cab, to the extreme danger of the locomotive crew.

Economizer

An economiser is a device fitted to a boiler which saves energy by using the exhaust gases from the boiler to pre-heat the cold water used the fill it (the feed water).

Flue gases from large boilers are typically 250 - 350°C. Stack Economizers recover some of this heat for pre-heating water. The water is most often used for boiler make-up water or some other need that coincides with boiler operation. Stack Economizers should be considered as an efficiency measure when large amounts of make-up water are used (ie: not all condensate is returned to the boiler or large amounts of live steam are used in the process so there is no condensate to return.)

It consists of an array of vertical cast iron tubes connected to a tank of water above and below, between which the boiler's exhaust gases are passed. This is the reverse arrangement to that of fire tubes in a boiler itself; there the hot gases pass through tubes immersed in water, whereas in an economiser the water passes through tubes surrounded by hot gases. For good efficiencies, the tubes must be free of deposits of soot.

They are often referred to as feedwater heaters and heat the condensate from turbines before it is pumped to the boilers.

The savings potential is based on the existing stack temperature, the volume of make-up water needed, and the hours of operation. Economizers are available in a wide range of sizes, from small coil-like units to very large waste heat recovery boilers.
Stack Economizers should be considered as an efficiency measure when large amounts of make-up water are used (ie: not all condensate is returned to the boiler or large amounts of live steam is used in the process so there is no condensate to return) or there is a simultaneous need for large volumes of hot water.

What is a Boiler Economizer?

A boiler economizer is a heat exchanger device that captures the "lost or waste heat" from the boiler's hot stack gas. The economizer typically transfers this waste heat to the boiler's feed-water or return water circuit, but it can also be used to heat domestic water or other process fluids. Capturing this normally lost heat reduces the overall fuel requirements for the boiler. Less fuel equates to money saved as well as fewer emissions - since the boiler now operates at a higher efficiency. This is possible because the boiler feed-water or return water is pre-heated by the economizer therefore the boilers main heating circuit does not need to provide as much heat to produce a given output quantity of steam or hot water. Again fuel savings are the result. Boiler economizers improve a boiler's efficiency by extracting heat from the flue gases discharged.

Systems Equipment Corporation Boiler Economizers are fabricated from uniquely formed tubular elements, similar to a tear drop or diamond shape. Each economizer is specifically designed to match our clients boiler characteristics in order to maximize efficiency and the use of boiler room space. Because Systems Equipment Corporation Boiler Economizers are manufactured from stainless steel the usual corrosion problems encountered by our competitions designs are eliminated.

Heat exchanger

A heat exchanger is a device that is used for transfer of thermal energy (enthalpy)
between two or more fluids, between a solid surface and a fluid, or between solid particulates and a fluid, at differing temperatures and in thermal contact, usually without external heat and work interactions. The fluids may be single compounds or mixtures.
Typical applications involve heating or cooling of a fluid stream of concern, evaporation or condensation of a single or multicomponent fluid stream, and heat recovery or heat rejection from a system. In other applications, the objective may be to sterilize, pasteurize,
fractionate, distill, concentrate, crystallize, or control process fluid. In some heat exchangers, the fluids exchanging heat are in direct contact. In other heat exchangers, heat transfer between fluids takes place through a separating wall or into and out of a wall in a transient manner.
In most heat exchangers, the fluids are separated by a heat transfer surface, and ideally they do not mix. Such exchangers are referred to as the direct transfer type, or simply recuperators.
In contrast, exchangers in which there is an intermittent heat exchange between the hot and cold fluids via thermal energy storage and rejection through the exchanger surface or matrix—are referred to as the
indirect transfer type or storage type, or simply regenerators.Such exchangers usually have leakage and fluid carryover from one stream to the other.
Heat exchangers may be classified according to transfer process, construction, flow arrangement, surface compactness, number of fluids and heat transfer mechanisms or according to process functions.

Types of heat exchangers
  1. Shell and tube heat exchanger
  2. Plate heat exchanger
  3. Adiabatic wheel heat exchanger
  4. Plate fin heat exchanger
  5. Pillow plate heat exchanger
  6. Fluid heat exchangers
  7. Waste heat recovery units
  8. Dynamic scraped surface heat exchanger
  9. Phase-change heat exchangers
Shell and tube heat exchanger

Shell and tube heat exchangers consist of a series of tubes. One set of these tubes contains the fluid that must be either heated or cooled. The second fluid runs over the tubes that are being heated or cooled so that it can either provide the heat or absorb the heat required. A set of tubes is called the tube bundle and can be made up of several types of tubes: plain, longitudinally finned, etc. Shell and tube heat exchangers are typically used for high-pressure applications (with pressures greater than 30 bar and temperatures greater than 260 °C).[2] This is because the shell and tube heat exchangers are robust due to their shape.
There are several thermal design features that are to be taken into account when designing the tubes in the shell and tube heat exchangers. These include:
Tube diameter: Using a small tube diameter makes the heat exchanger both economical and compact. However, it is more likely for the heat exchanger to foul up faster and the small size makes mechanical cleaning of the fouling difficult. To prevail over the fouling and cleaning problems, larger tube diameters can be used. Thus to determine the tube diameter, the available space, cost and the fouling nature of the fluids must be considered.                                                                            watch this video
Tube thickness: The thickness of the wall of the tubes is usually determined to ensure:
There is enough room for corrosion
That flow-induced vibration has resistance
Axial strength
Availability of spare parts
Hoop strength (to withstand internal tube pressure)
Buckling strength (to withstand overpressure in the shell)
Tube length: heat exchangers are usually cheaper when they have a smaller shell diameter and a long tube length. Thus, typically there is an aim to make the heat exchanger as long as physically possible whilst not exceeding production capabilities. However, there are many limitations for this, including the space available at the site where it is going to be used and the need to ensure that there are tubes available in lengths that are twice the required length (so that the tubes can be withdrawn and replaced). Also, it has to be remembered that long, thin tubes are difficult to take out and replace.
Tube pitch: when designing the tubes, it is practical to ensure that the tube pitch (i.e., the centre-centre distance of adjoining tubes) is not less than 1.25 times the tubes' outside diameter. A larger tube pitch leads to a larger overall shell diameter which leads to a more expensive heat exchanger.
Tube corrugation: this type of tubes, mainly used for the inner tubes, increases the turbulence of the fluids and the effect is very important in the heat transfer giving a better performance.
Tube Layout: refers to how tubes are positioned within the shell. There are four main types of tube layout, which are, triangular (30°), rotated triangular (60°), square (90°) and rotated square (45°). The triangular patterns are employed to give greater heat transfer as they force the fluid to flow in a more turbulent fashion around the piping. Square patterns are employed where high fouling is experienced and cleaning is more regular.
Baffle Design: baffles are used in shell and tube heat exchangers to direct fluid across the tube bundle. They run perpendicularly to the shell and hold the bundle, preventing the tubes from sagging over a long length. They can also prevent the tubes from vibrating. The most common type of baffle is the segmental baffle. The semicircular segmental baffles are oriented at 180 degrees to the adjacent baffles forcing the fluid to flow upward and downwards between the tube bundle. Baffle spacing is of large thermodynamic concern when designing shell and tube heat exchangers. Baffles must be spaced with consideration for the conversion of pressure drop and heat transfer. For thermo economic optimization it is suggested that the baffles be spaced no closer than 20% of the shell’s inner diameter. Having baffles spaced too closely causes a greater pressure drop because of flow redirection. Consequently having the baffles spaced too far apart means that there may be cooler spots in the corners between baffles. It is also important to ensure the baffles are spaced close enough that the tubes do not sag. The other main type of baffle is the disc and donut baffle which consists of two concentric baffles, the outer wider baffle looks like a donut, whilst the inner baffle is shaped as a disk. This type of baffle forces the fluid to pass around each side of the disk then through the donut baffle generating a different type of fluid flow.

Self cleaning

SHEs are often used in the heating of fluids which contain solids and thus have a tendency to foul the inside of the heat exchanger. The low pressure drop gives the SHE its ability to handle fouling more easily. The SHE uses a “self cleaning” mechanism, whereby fouled surfaces cause a localized increase in fluid velocity, thus increasing the drag (or fluid friction) on the fouled surface, thus helping to dislodge the blockage and keep the heat exchanger clean. "The internal walls that make up the heat transfer surface are often rather thick, which makes the SHE very robust, and able to last a long time in demanding environments." They are also easily cleaned, opening out like an oven where any build up of foulant can be removed by pressure washing.

Monitoring and maintenance

Online monitoring of commercial heat exchangers is done by tracking the overall heat transfer coefficient. The overall heat transfer coefficient tends to decline over time due to fouling.

U=Q/AΔTlm

By periodically calculating the overall heat transfer coefficient from exchanger flow rates and temperatures, the owner of the heat exchanger can estimate when cleaning the heat exchanger will be economically attractive.

Integrity inspection of plate and tubular heat exchanger can be tested in situ by the conductivity or helium gas methods. These methods confirm the integrity of the plates or tubes to prevent any cross contamination and the condition of the gaskets.

Mechanical integrity monitoring of heat exchanger tubes may be conducted through Nondestructive methods such as eddy current testing.

Fouling

A heat exchanger in a steam power station contaminated with macrofouling.

Fouling occurs when impurities deposit on the heat exchange surface. Deposition of these impurities can be caused by:
Low wall shear stress
Low fluid velocities
High fluid velocities
Reaction product solid precipitation
Precipitation of dissolved impurities due to elevated wall temperatures

The rate of heat exchanger fouling is determined by the rate of particle deposition less re-entrainment/suppression. This model was originally proposed in 1959 by Kern and Seaton.

Crude Oil Exchanger Fouling. In commercial crude oil refining, crude oil is heated from 21 °C to 343 °C prior to entering the distillation column. A series of shell and tube heat exchangers is typically used to exchange heat between the crude oil and other oil streams, in order to get the crude to 260 °C prior to heating in a furnace. Fouling occurs on the crude side of these exchangers due to asphaltene insolubility. The nature of asphaltene solubility in crude oil was successfully modeled by Wiehe and Kennedy. The precipitation of insoluble asphaltenes in crude preheat trains has been successfully modeled as a first order reaction by Ebert and Panchal[ who expanded on the work of Kern and Seaton.

Maintenance

Plate heat exchangers need to be disassembled and cleaned periodically. Tubular heat exchangers can be cleaned by such methods as acid cleaning, sandblasting, high-pressure water jet, bullet cleaning, or drill rods.

In large-scale cooling water systems for heat exchangers, water treatment such as purification, addition of chemicals, and testing, is used to minimize fouling of the heat exchange equipment. Other water treatment is also used in steam systems for power plants, etc. to minimize fouling and corrosion of the heat exchange and other equipment.

In industry
A variety of companies have started using water borne oscillations technology to prevent biofouling. Without the use of chemicals, this type of technology has helped in providing a low-pressure drop in heat exchangers.

Heat exchangers are widely used in industry both for cooling and heating large scale industrial processes. The type and size of heat exchanger used can be tailored to suit a process depending on the type of fluid, its phase, temperature, density, viscosity, pressures, chemical composition and various other thermodynamic properties.

In many industrial processes there is waste of energy or a heat stream that is being exhausted, heat exchangers can be used to recover this heat and put it to use by heating a different stream in the process. This practice saves a lot of money in industry as the heat supplied to other streams from the heat exchangers would otherwise come from an external source which is more expensive and more harmful to the environment.

Watch this  Presentation .............................................
f">

Deaerator

A deaerator is a device that is widely used for the removal of oxygen and other dissolved gases from the feed water to steam-generating boilers. In particular, dissolved oxygen in boiler feed waters will cause serious corrosion damage in steam systems by attaching to the walls of metal piping and other metallic equipment and forming oxides (rust). Water also combines with any dissolved carbon dioxide to form carbonic acid that causes further corrosion. Most deaerators are designed to remove oxygen down to levels of 7 ppb by weight (0.005 cm³/L) or less.

Manufacturer Descon Engineering Limited
Design Temperature       120 C
Design Pressure             150 PsiG
Hydrotest Pressure        187 PsiG
Capacity                        39.6 T/H
Diameter                        2200 mm
Shell Thickness               10 mm
Head Thickness              10 mm








There are two basic types of deaerators, the tray-type and the spray-type

Tray-type (also called the cascade-type) includes a vertical domed deaeration section mounted on top of a horizontal cylindrical vessel which serves as the deaerated boiler feedwater storage tank.


Spray-type consists only of a horizontal (or vertical) cylindrical vessel which serves as both the deaeration section and the boiler feedwater storage tank.


Tray-type deaerator

The typical horizontal tray-type deaerator in picture has a vertical domed deaeration section mounted above a horizontal boiler feedwater storage vessel. Boiler feedwater enters the vertical deaeration section above the perforated trays and flows downward through the perforations. Low-pressure deaeration steam enters below the perforated trays and flows upward through the perforations. Some designs use various types of packing material, rather than perforated trays, to provide good contact and mixing between the steam and the boiler feed water.

The steam strips the dissolved gas from the boiler feedwater and exits via the vent at the top of the domed section. Some designs may include a vent condenser to trap and recover any water entrained inthe vented gas. The vent line usually includes a valve and just enough steam is allowed to escape with the
vented gases to provide a small and visible telltale plume of steam.
The deaerated water flows down into the horizontal storage vessel from where it is pumped to the steam generating boiler system. Low-pressure heating steam, which enters the horizontal vessel through a sparger pipe in the bottom of the vessel, is provided to keep the stored boiler feedwater warm. External insulation of the vessel is typically provided to minimize heat loss.

Spray-type deaerator

As shown in picture, the typical spray-type deaerator is a horizontal vessel which has a preheating section (E) and a deaeration section (F). The two sections are separated by a baffle(C). Low-pressure steam enters the vessel through a sparger in the bottom of the vessel.

The boiler feedwater is sprayed into section (E) where it is preheated by the rising steam from the sparger. The purpose of the feedwater spray nozzle (A) and the preheat section is to heat the boiler feedwater to its saturation temperature to facilitate stripping out the dissolved gases in the following deaeration section.

The preheated feedwater then flows into the dearation section (F), where it is deaerated by the steam rising from the sparger system. The gases stripped out of the water exit via the vent at the top of the vessel. Again, some designs may include a vent condenser to trap and recover any water entrained in the vented gas. Also again, the vent line usually includes a valve and just enough steam is allowed to escape with the vented gases to provide a small and visible telltale plume of steam

Deaerator-dome
At the top and in the mid portion of the feed tank an inverted domed vessel of sufficient size as dictated, is attached which is called the deaerator. This portion has internals something like a perforated tray to breakdown the down flow of condensate water from the top into fine globules to separate dissolved gases. The heating steam, which is fed at the lower level of the dome, passes upwards to give good intermixing. A small vent pipe at the topmost point of this dome is provided for venting out the dissolved gases. Some designs of smaller sizes may have a vent condenser to trap and recover any water particles escaping through this vent.

The deaerator dome therefore has connections for condensate water inlet (at one side of the dome near the top end) from previous LP feed heater and also a connection for the deaerating steam from the bottom of the dome (which also incidentally heats the feed water). This steam is generally from an extraction point of the turbine to improve the cycle efficiency. The deaerator therefore i

Feed tank

This is generally a horizontally mounted cylindrical steel vessel with dished ends and with internal and external fittings. The size of the same depends on the unit capacity it is associated with. The cylindrical vessel portion acts as storage for boiler feed water supplying to the suction of the boiler feed pumps from a pipe connected to the bottom of the tank, generally in the mid portion.

During cold start of the unit, it is possible the water in the feed tank may be cold. At that time the water has to be heated to bring it up to normal operating temperature to expel the dissolved gases. For this, a provision of a heater pipe inside the tank longitudinally and at the bottom level is provided. A few vertical pipes on this line are provided with holes to distribute the heating steam uniformly to avoid water hammer in the initial stages of heating. For this normally a connection from auxiliary steam header is provided, since the auxiliary steam is available first after startup of the boiler.

A small bore connection with a pipe line to the full length of the feed tank at the bottom is also provided for injection of chemical liquids.

Oxygen scavengers
Oxygen scavenging chemicals are very often added to the deaerated boiler feedwater to remove any last traces of oxygen that were not removed by the deaerator. The most commonly used oxygen scavenger is sodium sulfite (Na2SO3). It is very effective and rapidly reacts with traces of oxygen to form sodium sulfate (Na2SO4) which is non-scaling.
Only oxygen scavenger i.e. Na sulphite (19P) is used into the Deaerator. All the rest chemicals (scale inhibitor—Nalco 72210—phosphate based & alkaliner NH3 gas) are injected as per demand into the discharge of Feed Water Pump whose specifications are as follow.

Attock Refinery Limited

Arl Introduction)
Instruction


Utilities Operations.

ARL has vast range of operation therefore it needs versatility of process. This flexibility can’t be achieved without utilities operations. Utilities are the backbone of any process industry .

More Informaction Click Here

Centrifugal pump

A centrifugal pump is a rotodynamic pump that uses a rotating impeller to create flow by the addition of energy to a fluid. Centrifugal pumps are commonly used to move liquids through piping. The fluid enters the pump impeller along or near to the rotating axis and is accelerated by the impeller, flowing radially outward into a diffuser or volute chamber (casing), from where it exits into the downstream piping. Centrifugal pumps are used for large discharge through smaller heads.
Parts..........................................
Impeller............

An impeller is a rotating component of a centrifugal pump, usually made of iron, steel, bronze, brass, aluminum or plastic, which transfers energy from the motor that drives the pump to the fluid being pumped by accelerating the fluid outwards from the center of rotation. The velocity achieved by the impeller transfers into pressure when the outward movement of the fluid is confined by the pump casing. Impellers are usually short cylinders with an open inlet (called an eye) to accept incoming fluid, vanes to push the fluid radially, and a splined, keyed or threaded bore to accept a drive-shaft.
The impeller made out of cast material in many cases may be called rotor, also. It is cheaper to cast the radial impeller right in the support it is fitted on, which is put in motion by the gearbox from an electric motor, combustion engine or by steam driven turbine. The rotor usually names both the spindle and the impeller when they are mounted by bolts.

Pump Ring                                                     Oil Seal
 
O Ring                                               Nut & Bults

Bearing Cover                                            Bearinf Housing

Gas Kit                                                Gland Packing

 
Mechanical Seal                                      Ball Bearning

Shaft                                     Shaft Sleeve


How ToWork.....................
Like most pumps, a centrifugal pump converts mechanical energy from a motor to energy of a moving fluid; some of the energy goes into kinetic energy of fluid motion, and some into potential energy, represented by a fluid pressure or by lifting the fluid against gravity to a higher level.
For more details on this topic, see Centrifugal compressor.

The transfer of energy from the mechanical rotation of the impeller to the motion and pressure of the fluid is usually described in terms of centrifugal force, especially in older sources written before the modern concept of centrifugal force as a fictitious force in a rotating reference frame was well articulated. The concept of centrifugal force is not actually required to describe the action of the centrifugal pump.

In the modern centrifugal pump, most of the energy conversion is due to the outward force that curved impeller blades impart on the fluid. Invariably, some of the energy also pushes the fluid into a circular motion, and this circular motion can also convey some energy and increase the pressure at the outlet. The relationship between these mechanisms was described, with the typical mixed conception of centrifugal force as known as that time, in an 1859 article on centrifugal pumps.


Multistage centrifugal pumps.................
A centrifugal pump containing two or more impellers is called a multistage centrifugal pump. The impellers may be mounted on the same shaft or on different shafts.
If we need higher pressure at the outlet we can connect impellers in series.
If we need a higher flow output we can connect impellers in parallel.
All energy added to the fluid comes from the power of the electric or other motor force driving the impeller.

Efficiency of large pumps.................
Unless carefully designed, installed and monitored, pumps will be, or will become inefficient, wasting a lot of energy. Pumps need to be regularly tested to determine efficiency.

Energy usage...........................
The energy usage in a pumping installation is determined by the flow required, the height lifted and the length and friction characteristics of the pipeline. The power required to drive a pump (Pi), is defined simply using SI units by:
Single Stage Radial Flow Centrifugal Pump


where:
Pi is the input power required (W)
ρ is the fluid density (kg/m3)
g is the standard acceleration of gravity (9.80665 m/s2)
H is the energy Head added to the flow (m)
Q is the flow rate (m3/s)
η is the efficiency of the pump plant as a decimal

The head added by the pump (H) is a sum of the static lift, the head loss due to friction and any losses due to valves or pipe bends all expressed in metres of fluid. Power is more commonly expressed as kilowatts (103 W, kW) or horsepower (hp = kW*0.746). The value for the pump efficiency, ηpump, may be stated for the pump itself or as a combined efficiency of the pump and motor system.

The energy usage is determined by multiplying the power requirement by the length of time the pump is operating.

Priming...............................
Most centrifugal pumps are not self-priming. In other words, the pump casing must be filled with liquid before the pump is started, or the pump will not be able to function. If the pump casing becomes filled with vapors or gases, the pump impeller becomes gas-bound and incapable of pumping. To ensure that a centrifugal pump remains primed and does not become gas-bound, most centrifugal pumps are located below the level of the source from which the pump is to take its suction. The same effect can be gained by supplying liquid to the pump suction under pressure supplied by another pump placed in the suction line.

Watch this Presention ....................  click here