Centrifugal pump

A centrifugal pump is a rotodynamic pump that uses a rotating impeller to create flow by the addition of energy to a fluid. Centrifugal pumps are commonly used to move liquids through piping. The fluid enters the pump impeller along or near to the rotating axis and is accelerated by the impeller, flowing radially outward into a diffuser or volute chamber (casing), from where it exits into the downstream piping. Centrifugal pumps are used for large discharge through smaller heads.
Parts..........................................
Impeller............

An impeller is a rotating component of a centrifugal pump, usually made of iron, steel, bronze, brass, aluminum or plastic, which transfers energy from the motor that drives the pump to the fluid being pumped by accelerating the fluid outwards from the center of rotation. The velocity achieved by the impeller transfers into pressure when the outward movement of the fluid is confined by the pump casing. Impellers are usually short cylinders with an open inlet (called an eye) to accept incoming fluid, vanes to push the fluid radially, and a splined, keyed or threaded bore to accept a drive-shaft.
The impeller made out of cast material in many cases may be called rotor, also. It is cheaper to cast the radial impeller right in the support it is fitted on, which is put in motion by the gearbox from an electric motor, combustion engine or by steam driven turbine. The rotor usually names both the spindle and the impeller when they are mounted by bolts.

Pump Ring                                                     Oil Seal
 
O Ring                                               Nut & Bults

Bearing Cover                                            Bearinf Housing

Gas Kit                                                Gland Packing

 
Mechanical Seal                                      Ball Bearning

Shaft                                     Shaft Sleeve


How ToWork.....................
Like most pumps, a centrifugal pump converts mechanical energy from a motor to energy of a moving fluid; some of the energy goes into kinetic energy of fluid motion, and some into potential energy, represented by a fluid pressure or by lifting the fluid against gravity to a higher level.
For more details on this topic, see Centrifugal compressor.

The transfer of energy from the mechanical rotation of the impeller to the motion and pressure of the fluid is usually described in terms of centrifugal force, especially in older sources written before the modern concept of centrifugal force as a fictitious force in a rotating reference frame was well articulated. The concept of centrifugal force is not actually required to describe the action of the centrifugal pump.

In the modern centrifugal pump, most of the energy conversion is due to the outward force that curved impeller blades impart on the fluid. Invariably, some of the energy also pushes the fluid into a circular motion, and this circular motion can also convey some energy and increase the pressure at the outlet. The relationship between these mechanisms was described, with the typical mixed conception of centrifugal force as known as that time, in an 1859 article on centrifugal pumps.


Multistage centrifugal pumps.................
A centrifugal pump containing two or more impellers is called a multistage centrifugal pump. The impellers may be mounted on the same shaft or on different shafts.
If we need higher pressure at the outlet we can connect impellers in series.
If we need a higher flow output we can connect impellers in parallel.
All energy added to the fluid comes from the power of the electric or other motor force driving the impeller.

Efficiency of large pumps.................
Unless carefully designed, installed and monitored, pumps will be, or will become inefficient, wasting a lot of energy. Pumps need to be regularly tested to determine efficiency.

Energy usage...........................
The energy usage in a pumping installation is determined by the flow required, the height lifted and the length and friction characteristics of the pipeline. The power required to drive a pump (Pi), is defined simply using SI units by:
Single Stage Radial Flow Centrifugal Pump


where:
Pi is the input power required (W)
ρ is the fluid density (kg/m3)
g is the standard acceleration of gravity (9.80665 m/s2)
H is the energy Head added to the flow (m)
Q is the flow rate (m3/s)
η is the efficiency of the pump plant as a decimal

The head added by the pump (H) is a sum of the static lift, the head loss due to friction and any losses due to valves or pipe bends all expressed in metres of fluid. Power is more commonly expressed as kilowatts (103 W, kW) or horsepower (hp = kW*0.746). The value for the pump efficiency, ηpump, may be stated for the pump itself or as a combined efficiency of the pump and motor system.

The energy usage is determined by multiplying the power requirement by the length of time the pump is operating.

Priming...............................
Most centrifugal pumps are not self-priming. In other words, the pump casing must be filled with liquid before the pump is started, or the pump will not be able to function. If the pump casing becomes filled with vapors or gases, the pump impeller becomes gas-bound and incapable of pumping. To ensure that a centrifugal pump remains primed and does not become gas-bound, most centrifugal pumps are located below the level of the source from which the pump is to take its suction. The same effect can be gained by supplying liquid to the pump suction under pressure supplied by another pump placed in the suction line.

Watch this Presention ....................  click here


0 comments:

Post a Comment